MakeItFrom.com
Menu (ESC)

C14520 Copper vs. EN AC-47000 Aluminum

C14520 copper belongs to the copper alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C14520 copper and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 9.0 to 9.6
1.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 290 to 330
180
Tensile Strength: Yield (Proof), MPa 230 to 250
97

Thermal Properties

Latent Heat of Fusion, J/g 210
570
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
590
Melting Onset (Solidus), °C 1050
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 320
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
33
Electrical Conductivity: Equal Weight (Specific), % IACS 85
110

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 310
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
65
Stiffness to Weight: Axial, points 7.2
16
Stiffness to Weight: Bending, points 18
54
Strength to Weight: Axial, points 9.0 to 10
19
Strength to Weight: Bending, points 11 to 12
27
Thermal Diffusivity, mm2/s 94
55
Thermal Shock Resistance, points 10 to 12
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.2 to 99.596
0 to 1.0
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0
0.050 to 0.55
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0.0040 to 0.020
0
Silicon (Si), % 0
10.5 to 13.5
Tellurium (Te), % 0.4 to 0.7
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25