MakeItFrom.com
Menu (ESC)

C14520 Copper vs. C53400 Bronze

Both C14520 copper and C53400 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is C53400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 290 to 330
330 to 720

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1050
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
69
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
15
Electrical Conductivity: Equal Weight (Specific), % IACS 85
15

Otherwise Unclassified Properties

Base Metal Price, % relative 33
32
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
49
Embodied Water, L/kg 310
350

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.0 to 10
10 to 22
Strength to Weight: Bending, points 11 to 12
12 to 20
Thermal Diffusivity, mm2/s 94
21
Thermal Shock Resistance, points 10 to 12
12 to 26

Alloy Composition

Copper (Cu), % 99.2 to 99.596
91.8 to 95.7
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0.8 to 1.2
Phosphorus (P), % 0.0040 to 0.020
0.030 to 0.35
Tellurium (Te), % 0.4 to 0.7
0
Tin (Sn), % 0
3.5 to 5.8
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5

Comparable Variants