MakeItFrom.com
Menu (ESC)

C14520 Copper vs. N08810 Stainless Steel

C14520 copper belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0 to 9.6
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 190
340
Tensile Strength: Ultimate (UTS), MPa 290 to 330
520
Tensile Strength: Yield (Proof), MPa 230 to 250
200

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1050
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
12
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 85
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
30
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
5.3
Embodied Energy, MJ/kg 42
76
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
140
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
18
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 94
3.0
Thermal Shock Resistance, points 10 to 12
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 99.2 to 99.596
0 to 0.75
Iron (Fe), % 0
39.5 to 50.7
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 35
Phosphorus (P), % 0.0040 to 0.020
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tellurium (Te), % 0.4 to 0.7
0
Titanium (Ti), % 0
0.15 to 0.6