MakeItFrom.com
Menu (ESC)

C14520 Copper vs. S40945 Stainless Steel

C14520 copper belongs to the copper alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.0 to 9.6
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 170 to 190
270
Tensile Strength: Ultimate (UTS), MPa 290 to 330
430
Tensile Strength: Yield (Proof), MPa 230 to 250
230

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
710
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
26
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 85
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
8.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 42
31
Embodied Water, L/kg 310
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
89
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
15
Strength to Weight: Bending, points 11 to 12
16
Thermal Diffusivity, mm2/s 94
6.9
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
85.1 to 89.3
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.0040 to 0.020
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.4 to 0.7
0
Titanium (Ti), % 0
0.050 to 0.2