MakeItFrom.com
Menu (ESC)

C14520 Copper vs. S46800 Stainless Steel

C14520 copper belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0 to 9.6
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 190
300
Tensile Strength: Ultimate (UTS), MPa 290 to 330
470
Tensile Strength: Yield (Proof), MPa 230 to 250
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
920
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
23
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 85
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 42
37
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
98
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
130
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
17
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 94
6.1
Thermal Shock Resistance, points 10 to 12
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
76.5 to 81.8
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.0040 to 0.020
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.4 to 0.7
0
Titanium (Ti), % 0
0.070 to 0.3