MakeItFrom.com
Menu (ESC)

C14700 Copper vs. 1230A Aluminum

C14700 copper belongs to the copper alloys classification, while 1230A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C14700 copper and the bottom bar is 1230A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 9.1 to 35
4.5 to 34
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 160 to 190
59 to 99
Tensile Strength: Ultimate (UTS), MPa 240 to 320
89 to 170
Tensile Strength: Yield (Proof), MPa 85 to 250
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
640
Melting Onset (Solidus), °C 1070
640
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 370
230
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
60
Electrical Conductivity: Equal Weight (Specific), % IACS 96
200

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.0
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
5.9 to 150
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 7.3 to 10
9.1 to 17
Strength to Weight: Bending, points 9.5 to 12
16 to 25
Thermal Diffusivity, mm2/s 110
93
Thermal Shock Resistance, points 8.4 to 12
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99.3 to 100
Copper (Cu), % 99.395 to 99.798
0 to 0.1
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.050
Phosphorus (P), % 0.0020 to 0.0050
0
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0.2 to 0.5
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.1
0