MakeItFrom.com
Menu (ESC)

C14700 Copper vs. EN 1.4581 Stainless Steel

C14700 copper belongs to the copper alloys classification, while EN 1.4581 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is EN 1.4581 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 35
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 240 to 320
510
Tensile Strength: Yield (Proof), MPa 85 to 250
210

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 370
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
21
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.2
Embodied Energy, MJ/kg 41
59
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
120
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.3 to 10
18
Strength to Weight: Bending, points 9.5 to 12
18
Thermal Diffusivity, mm2/s 110
3.9
Thermal Shock Resistance, points 8.4 to 12
12

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 99.395 to 99.798
0
Iron (Fe), % 0
61.4 to 71
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0.2 to 0.5
0 to 0.030
Residuals, % 0 to 0.1
0