MakeItFrom.com
Menu (ESC)

C14700 Copper vs. EN 1.4587 Stainless Steel

C14700 copper belongs to the copper alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 35
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 240 to 320
540
Tensile Strength: Yield (Proof), MPa 85 to 250
250

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1070
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 370
17
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.3
Embodied Energy, MJ/kg 41
87
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
150
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
150
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.3 to 10
18
Strength to Weight: Bending, points 9.5 to 12
18
Thermal Diffusivity, mm2/s 110
4.5
Thermal Shock Resistance, points 8.4 to 12
13

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 99.395 to 99.798
2.0 to 3.0
Iron (Fe), % 0
32.7 to 41.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0.2 to 0.5
0 to 0.025
Residuals, % 0 to 0.1
0