MakeItFrom.com
Menu (ESC)

C14700 Copper vs. EN 2.4632 Nickel

C14700 copper belongs to the copper alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 35
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
76
Shear Strength, MPa 160 to 190
770
Tensile Strength: Ultimate (UTS), MPa 240 to 320
1250
Tensile Strength: Yield (Proof), MPa 85 to 250
780

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1080
1340
Melting Onset (Solidus), °C 1070
1290
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 370
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 96
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
9.4
Embodied Energy, MJ/kg 41
130
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
180
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
1570
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.3 to 10
42
Strength to Weight: Bending, points 9.5 to 12
31
Thermal Diffusivity, mm2/s 110
3.3
Thermal Shock Resistance, points 8.4 to 12
39

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 99.395 to 99.798
0 to 0.2
Iron (Fe), % 0
0 to 1.5
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0.2 to 0.5
0 to 0.015
Titanium (Ti), % 0
2.0 to 3.0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.1
0