MakeItFrom.com
Menu (ESC)

C14700 Copper vs. CC497K Bronze

Both C14700 copper and CC497K bronze are copper alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
93
Elongation at Break, % 9.1 to 35
6.7
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 43
34
Tensile Strength: Ultimate (UTS), MPa 240 to 320
190
Tensile Strength: Yield (Proof), MPa 85 to 250
91

Thermal Properties

Latent Heat of Fusion, J/g 210
160
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
870
Melting Onset (Solidus), °C 1070
800
Specific Heat Capacity, J/kg-K 390
330
Thermal Conductivity, W/m-K 370
53
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.9
9.3
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
48
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
10
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
45
Stiffness to Weight: Axial, points 7.2
5.5
Stiffness to Weight: Bending, points 18
16
Strength to Weight: Axial, points 7.3 to 10
5.6
Strength to Weight: Bending, points 9.5 to 12
7.8
Thermal Diffusivity, mm2/s 110
17
Thermal Shock Resistance, points 8.4 to 12
7.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Copper (Cu), % 99.395 to 99.798
67.5 to 77.5
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
18 to 23
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0.2 to 0.5
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.1
0