MakeItFrom.com
Menu (ESC)

C14700 Copper vs. C49300 Brass

Both C14700 copper and C49300 brass are copper alloys. They have 60% of their average alloy composition in common.

For each property being compared, the top bar is C14700 copper and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 9.1 to 35
4.5 to 20
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Shear Strength, MPa 160 to 190
270 to 290
Tensile Strength: Ultimate (UTS), MPa 240 to 320
430 to 520
Tensile Strength: Yield (Proof), MPa 85 to 250
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
880
Melting Onset (Solidus), °C 1070
840
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 370
88
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
15
Electrical Conductivity: Equal Weight (Specific), % IACS 96
17

Otherwise Unclassified Properties

Base Metal Price, % relative 30
26
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
220 to 800
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.3 to 10
15 to 18
Strength to Weight: Bending, points 9.5 to 12
16 to 18
Thermal Diffusivity, mm2/s 110
29
Thermal Shock Resistance, points 8.4 to 12
14 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 99.395 to 99.798
58 to 62
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0.2 to 0.5
0
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5

Comparable Variants