MakeItFrom.com
Menu (ESC)

C14700 Copper vs. C51000 Bronze

Both C14700 copper and C51000 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.1 to 35
2.7 to 64
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Shear Strength, MPa 160 to 190
250 to 460
Tensile Strength: Ultimate (UTS), MPa 240 to 320
330 to 780
Tensile Strength: Yield (Proof), MPa 85 to 250
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1070
960
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 370
77
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
18
Electrical Conductivity: Equal Weight (Specific), % IACS 96
18

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
75 to 2490
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.3 to 10
10 to 25
Strength to Weight: Bending, points 9.5 to 12
12 to 21
Thermal Diffusivity, mm2/s 110
23
Thermal Shock Resistance, points 8.4 to 12
12 to 28

Alloy Composition

Copper (Cu), % 99.395 to 99.798
92.9 to 95.5
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0.0020 to 0.0050
0.030 to 0.35
Sulfur (S), % 0.2 to 0.5
0
Tin (Sn), % 0
4.5 to 5.8
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5

Comparable Variants