MakeItFrom.com
Menu (ESC)

C15000 Copper vs. AWS ER120S-1

C15000 copper belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C15000 copper and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13 to 54
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 200 to 460
930
Tensile Strength: Yield (Proof), MPa 45 to 460
830

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 370
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 93
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 93
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.2
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 43
25
Embodied Water, L/kg 310
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 250
150
Resilience: Unit (Modulus of Resilience), kJ/m3 8.7 to 910
1850
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.2 to 14
33
Strength to Weight: Bending, points 8.5 to 15
27
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 7.3 to 17
27

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 99.8 to 99.9
0 to 0.25
Iron (Fe), % 0
92.4 to 96.1
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0.1 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.5