MakeItFrom.com
Menu (ESC)

C15000 Copper vs. C87300 Bronze

Both C15000 copper and C87300 bronze are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C15000 copper and the bottom bar is C87300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 13 to 54
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 200 to 460
350
Tensile Strength: Yield (Proof), MPa 45 to 460
140

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
970
Melting Onset (Solidus), °C 980
820
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 370
28
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 93
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 93
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.6
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 250
62
Resilience: Unit (Modulus of Resilience), kJ/m3 8.7 to 910
86
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.2 to 14
11
Strength to Weight: Bending, points 8.5 to 15
13
Thermal Diffusivity, mm2/s 110
8.0
Thermal Shock Resistance, points 7.3 to 17
13

Alloy Composition

Copper (Cu), % 99.8 to 99.9
94 to 95.7
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
0.8 to 1.5
Silicon (Si), % 0
3.5 to 5.0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0.1 to 0.2
0
Residuals, % 0
0 to 0.5