MakeItFrom.com
Menu (ESC)

C15100 Copper vs. 1350 Aluminum

C15100 copper belongs to the copper alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C15100 copper and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 2.0 to 36
1.4 to 30
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 170 to 270
44 to 110
Tensile Strength: Ultimate (UTS), MPa 260 to 470
68 to 190
Tensile Strength: Yield (Proof), MPa 69 to 460
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1100
660
Melting Onset (Solidus), °C 1030
650
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 360
230
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 95
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 43
160
Embodied Water, L/kg 310
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
4.4 to 200
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 8.1 to 15
7.0 to 19
Strength to Weight: Bending, points 10 to 15
14 to 27
Thermal Diffusivity, mm2/s 100
96
Thermal Shock Resistance, points 9.3 to 17
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.010
Copper (Cu), % 99.8 to 99.95
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0
0 to 0.4
Manganese (Mn), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.1