MakeItFrom.com
Menu (ESC)

C15100 Copper vs. 240.0 Aluminum

C15100 copper belongs to the copper alloys classification, while 240.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C15100 copper and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 2.0 to 36
1.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 260 to 470
240
Tensile Strength: Yield (Proof), MPa 69 to 460
200

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1100
600
Melting Onset (Solidus), °C 1030
520
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 360
96
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
23
Electrical Conductivity: Equal Weight (Specific), % IACS 95
65

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 9.0
3.2
Embodied Carbon, kg CO2/kg material 2.7
8.7
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
280
Stiffness to Weight: Axial, points 7.2
12
Stiffness to Weight: Bending, points 18
43
Strength to Weight: Axial, points 8.1 to 15
20
Strength to Weight: Bending, points 10 to 15
26
Thermal Diffusivity, mm2/s 100
35
Thermal Shock Resistance, points 9.3 to 17
11

Alloy Composition

Aluminum (Al), % 0
81.7 to 86.9
Copper (Cu), % 99.8 to 99.95
7.0 to 9.0
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0
5.5 to 6.5
Manganese (Mn), % 0
0.3 to 0.7
Nickel (Ni), % 0
0.3 to 0.7
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.15