MakeItFrom.com
Menu (ESC)

C15100 Copper vs. 4045 Aluminum

C15100 copper belongs to the copper alloys classification, while 4045 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C15100 copper and the bottom bar is 4045 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 2.0 to 36
2.3
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Shear Strength, MPa 170 to 270
69
Tensile Strength: Ultimate (UTS), MPa 260 to 470
120
Tensile Strength: Yield (Proof), MPa 69 to 460
64

Thermal Properties

Latent Heat of Fusion, J/g 210
540
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1100
600
Melting Onset (Solidus), °C 1030
580
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 360
170
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
45
Electrical Conductivity: Equal Weight (Specific), % IACS 95
160

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.6
Embodied Carbon, kg CO2/kg material 2.7
7.8
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
2.4
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
29
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
54
Strength to Weight: Axial, points 8.1 to 15
13
Strength to Weight: Bending, points 10 to 15
21
Thermal Diffusivity, mm2/s 100
74
Thermal Shock Resistance, points 9.3 to 17
5.7

Alloy Composition

Aluminum (Al), % 0
87.4 to 91
Copper (Cu), % 99.8 to 99.95
0 to 0.3
Iron (Fe), % 0
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.050
Silicon (Si), % 0
9.0 to 11
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.15