MakeItFrom.com
Menu (ESC)

C15100 Copper vs. AISI 304L Stainless Steel

C15100 copper belongs to the copper alloys classification, while AISI 304L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
6.7 to 46
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 30 to 64
79
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 270
370 to 680
Tensile Strength: Ultimate (UTS), MPa 260 to 470
540 to 1160
Tensile Strength: Yield (Proof), MPa 69 to 460
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
540
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
16
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
92 to 1900
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
19 to 41
Strength to Weight: Bending, points 10 to 15
19 to 31
Thermal Diffusivity, mm2/s 100
4.2
Thermal Shock Resistance, points 9.3 to 17
12 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
65 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0