MakeItFrom.com
Menu (ESC)

C15100 Copper vs. AISI 403 Stainless Steel

C15100 copper belongs to the copper alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
16 to 25
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 30 to 64
83
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 270
340 to 480
Tensile Strength: Ultimate (UTS), MPa 260 to 470
530 to 780
Tensile Strength: Yield (Proof), MPa 69 to 460
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
28
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
6.5
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 43
27
Embodied Water, L/kg 310
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
210 to 840
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
19 to 28
Strength to Weight: Bending, points 10 to 15
19 to 24
Thermal Diffusivity, mm2/s 100
7.6
Thermal Shock Resistance, points 9.3 to 17
20 to 29

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
84.7 to 88.5
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0