MakeItFrom.com
Menu (ESC)

C15100 Copper vs. ASTM A372 Grade K Steel

C15100 copper belongs to the copper alloys classification, while ASTM A372 grade K steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is ASTM A372 grade K steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 170 to 270
490
Tensile Strength: Ultimate (UTS), MPa 260 to 470
780
Tensile Strength: Yield (Proof), MPa 69 to 460
620

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
48
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.4
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 43
24
Embodied Water, L/kg 310
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
160
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
1010
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 15
27
Strength to Weight: Bending, points 10 to 15
24
Thermal Diffusivity, mm2/s 100
13
Thermal Shock Resistance, points 9.3 to 17
23

Alloy Composition

Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
1.0 to 1.8
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
93.4 to 96.6
Manganese (Mn), % 0
0.1 to 0.4
Molybdenum (Mo), % 0
0.2 to 0.6
Nickel (Ni), % 0
2.0 to 3.3
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0