MakeItFrom.com
Menu (ESC)

C15100 Copper vs. AWS E2595

C15100 copper belongs to the copper alloys classification, while AWS E2595 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is AWS E2595.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
17
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 260 to 470
850

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
16
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.4
Embodied Energy, MJ/kg 43
61
Embodied Water, L/kg 310
190

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
30
Strength to Weight: Bending, points 10 to 15
25
Thermal Diffusivity, mm2/s 100
4.2
Thermal Shock Resistance, points 9.3 to 17
21

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 99.8 to 99.95
0.4 to 1.5
Iron (Fe), % 0
51.4 to 64.5
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
2.5 to 4.5
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.2
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
0.4 to 1.0
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0