MakeItFrom.com
Menu (ESC)

C15100 Copper vs. AWS E80C-B3L

C15100 copper belongs to the copper alloys classification, while AWS E80C-B3L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is AWS E80C-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 260 to 470
620
Tensile Strength: Yield (Proof), MPa 69 to 460
540

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 43
24
Embodied Water, L/kg 310
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
110
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
760
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 15
22
Strength to Weight: Bending, points 10 to 15
21
Thermal Diffusivity, mm2/s 100
11
Thermal Shock Resistance, points 9.3 to 17
18

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 99.8 to 99.95
0 to 0.35
Iron (Fe), % 0
93.5 to 96.5
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.5