MakeItFrom.com
Menu (ESC)

C15100 Copper vs. AWS ERTi-7

C15100 copper belongs to the copper alloys classification, while AWS ERTi-7 belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is AWS ERTi-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 36
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 260 to 470
340
Tensile Strength: Yield (Proof), MPa 69 to 460
280

Thermal Properties

Latent Heat of Fusion, J/g 210
420
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1100
1670
Melting Onset (Solidus), °C 1030
1620
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 360
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
7.3

Otherwise Unclassified Properties

Density, g/cm3 9.0
4.5
Embodied Carbon, kg CO2/kg material 2.7
47
Embodied Energy, MJ/kg 43
800
Embodied Water, L/kg 310
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
64
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
360
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.1 to 15
21
Strength to Weight: Bending, points 10 to 15
24
Thermal Diffusivity, mm2/s 100
8.8
Thermal Shock Resistance, points 9.3 to 17
26

Alloy Composition

Carbon (C), % 0
0 to 0.030
Copper (Cu), % 99.8 to 99.95
0
Hydrogen (H), % 0
0 to 0.0080
Iron (Fe), % 0
0 to 0.12
Nitrogen (N), % 0
0 to 0.015
Oxygen (O), % 0
0.080 to 0.16
Palladium (Pd), % 0
0.12 to 0.25
Titanium (Ti), % 0
99.417 to 99.8
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0