MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 1.0234 Steel

C15100 copper belongs to the copper alloys classification, while EN 1.0234 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 1.0234 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
12 to 29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 170 to 270
260 to 300
Tensile Strength: Ultimate (UTS), MPa 260 to 470
350 to 480
Tensile Strength: Yield (Proof), MPa 69 to 460
220 to 410

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
36 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
130 to 440
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 15
12 to 17
Strength to Weight: Bending, points 10 to 15
14 to 17
Thermal Diffusivity, mm2/s 100
14
Thermal Shock Resistance, points 9.3 to 17
11 to 15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0.13 to 0.17
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
99.02 to 99.5
Manganese (Mn), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0