MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 1.4419 Stainless Steel

C15100 copper belongs to the copper alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
11 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 270
410 to 950
Tensile Strength: Ultimate (UTS), MPa 260 to 470
660 to 1590
Tensile Strength: Yield (Proof), MPa 69 to 460
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
790
Melting Completion (Liquidus), °C 1100
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 43
30
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
350 to 3920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
24 to 57
Strength to Weight: Bending, points 10 to 15
22 to 39
Thermal Diffusivity, mm2/s 100
8.1
Thermal Shock Resistance, points 9.3 to 17
23 to 55

Alloy Composition

Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
82 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0