MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 1.4874 Stainless Steel

C15100 copper belongs to the copper alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.0 to 36
6.7
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 260 to 470
480
Tensile Strength: Yield (Proof), MPa 69 to 460
360

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 360
13
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 9.0
8.4
Embodied Carbon, kg CO2/kg material 2.7
7.6
Embodied Energy, MJ/kg 43
110
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
29
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
310
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 15
16
Strength to Weight: Bending, points 10 to 15
16
Thermal Diffusivity, mm2/s 100
3.3
Thermal Shock Resistance, points 9.3 to 17
11

Alloy Composition

Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
23 to 38.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.0 to 3.0
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0