MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 1.4923 Stainless Steel

C15100 copper belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
12 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 270
540 to 590
Tensile Strength: Ultimate (UTS), MPa 260 to 470
870 to 980
Tensile Strength: Yield (Proof), MPa 69 to 460
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1100
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
570 to 1580
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
31 to 35
Strength to Weight: Bending, points 10 to 15
26 to 28
Thermal Diffusivity, mm2/s 100
6.5
Thermal Shock Resistance, points 9.3 to 17
30 to 34

Alloy Composition

Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
83.5 to 87.1
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.35
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0

Comparable Variants