MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 1.5535 Steel

C15100 copper belongs to the copper alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
11 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 170 to 270
320 to 370
Tensile Strength: Ultimate (UTS), MPa 260 to 470
450 to 1490
Tensile Strength: Yield (Proof), MPa 69 to 460
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
50
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
240 to 680
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 15
16 to 53
Strength to Weight: Bending, points 10 to 15
17 to 37
Thermal Diffusivity, mm2/s 100
13
Thermal Shock Resistance, points 9.3 to 17
13 to 44

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 99.8 to 99.95
0 to 0.25
Iron (Fe), % 0
97.6 to 98.9
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0