MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 1.6579 Steel

C15100 copper belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
11 to 14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 260 to 470
850 to 980
Tensile Strength: Yield (Proof), MPa 69 to 460
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 360
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.7
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 43
22
Embodied Water, L/kg 310
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
950 to 2210
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1 to 15
30 to 35
Strength to Weight: Bending, points 10 to 15
25 to 28
Thermal Diffusivity, mm2/s 100
11
Thermal Shock Resistance, points 9.3 to 17
25 to 29

Alloy Composition

Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
94.2 to 96.1
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 0
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0

Comparable Variants