MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN 2.4951 Nickel

C15100 copper belongs to the copper alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 36
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 270
500
Tensile Strength: Ultimate (UTS), MPa 260 to 470
750
Tensile Strength: Yield (Proof), MPa 69 to 460
270

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1100
1360
Melting Onset (Solidus), °C 1030
1310
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 360
12
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 9.0
8.5
Embodied Carbon, kg CO2/kg material 2.7
9.3
Embodied Energy, MJ/kg 43
130
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
200
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
190
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.1 to 15
25
Strength to Weight: Bending, points 10 to 15
22
Thermal Diffusivity, mm2/s 100
3.1
Thermal Shock Resistance, points 9.3 to 17
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 99.8 to 99.95
0 to 0.5
Iron (Fe), % 0
0 to 5.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.6
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0