MakeItFrom.com
Menu (ESC)

C15100 Copper vs. EN AC-44200 Aluminum

C15100 copper belongs to the copper alloys classification, while EN AC-44200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C15100 copper and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 2.0 to 36
6.2
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 260 to 470
180
Tensile Strength: Yield (Proof), MPa 69 to 460
86

Thermal Properties

Latent Heat of Fusion, J/g 210
570
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1100
590
Melting Onset (Solidus), °C 1030
580
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 360
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
35
Electrical Conductivity: Equal Weight (Specific), % IACS 95
130

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 9.0
2.5
Embodied Carbon, kg CO2/kg material 2.7
7.7
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 310
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
51
Stiffness to Weight: Axial, points 7.2
16
Stiffness to Weight: Bending, points 18
55
Strength to Weight: Axial, points 8.1 to 15
20
Strength to Weight: Bending, points 10 to 15
28
Thermal Diffusivity, mm2/s 100
59
Thermal Shock Resistance, points 9.3 to 17
8.4

Alloy Composition

Aluminum (Al), % 0
85.2 to 89.5
Copper (Cu), % 99.8 to 99.95
0 to 0.050
Iron (Fe), % 0
0 to 0.55
Manganese (Mn), % 0
0 to 0.35
Silicon (Si), % 0
10.5 to 13.5
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.15