MakeItFrom.com
Menu (ESC)

C15100 Copper vs. CC140C Copper

Both C15100 copper and CC140C copper are copper alloys. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
11
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 260 to 470
340
Tensile Strength: Yield (Proof), MPa 69 to 460
230

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1100
Melting Onset (Solidus), °C 1030
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
310
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
77
Electrical Conductivity: Equal Weight (Specific), % IACS 95
78

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
34
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
220
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1 to 15
10
Strength to Weight: Bending, points 10 to 15
12
Thermal Diffusivity, mm2/s 100
89
Thermal Shock Resistance, points 9.3 to 17
12

Alloy Composition

Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 99.8 to 99.95
98.8 to 99.6
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0