MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C82700 Copper

Both C15100 copper and C82700 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
1.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 260 to 470
1200
Tensile Strength: Yield (Proof), MPa 69 to 460
1020

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1100
950
Melting Onset (Solidus), °C 1030
860
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 360
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
20
Electrical Conductivity: Equal Weight (Specific), % IACS 95
21

Otherwise Unclassified Properties

Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 43
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
21
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
4260
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.1 to 15
38
Strength to Weight: Bending, points 10 to 15
29
Thermal Diffusivity, mm2/s 100
39
Thermal Shock Resistance, points 9.3 to 17
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 99.8 to 99.95
94.6 to 96.7
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0
1.0 to 1.5
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 0.5