MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C95200 Bronze

Both C15100 copper and C95200 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 36
29
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 260 to 470
520
Tensile Strength: Yield (Proof), MPa 69 to 460
190

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1100
1050
Melting Onset (Solidus), °C 1030
1040
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 360
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
11
Electrical Conductivity: Equal Weight (Specific), % IACS 95
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 43
50
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
170
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.1 to 15
17
Strength to Weight: Bending, points 10 to 15
17
Thermal Diffusivity, mm2/s 100
14
Thermal Shock Resistance, points 9.3 to 17
19

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Copper (Cu), % 99.8 to 99.95
86 to 89
Iron (Fe), % 0
2.5 to 4.0
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0
0 to 1.0