MakeItFrom.com
Menu (ESC)

C15100 Copper vs. S32906 Stainless Steel

C15100 copper belongs to the copper alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.0 to 36
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
81
Shear Strength, MPa 170 to 270
550
Tensile Strength: Ultimate (UTS), MPa 260 to 470
850
Tensile Strength: Yield (Proof), MPa 69 to 460
620

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1100
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
20
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 43
52
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
220
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
950
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
30
Strength to Weight: Bending, points 10 to 15
26
Thermal Diffusivity, mm2/s 100
3.6
Thermal Shock Resistance, points 9.3 to 17
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 99.8 to 99.95
0 to 0.8
Iron (Fe), % 0
56.6 to 63.6
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0