MakeItFrom.com
Menu (ESC)

C15100 Copper vs. S43940 Stainless Steel

C15100 copper belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
21
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 30 to 64
76
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 270
310
Tensile Strength: Ultimate (UTS), MPa 260 to 470
490
Tensile Strength: Yield (Proof), MPa 69 to 460
280

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1100
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
38
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
86
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
200
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
18
Strength to Weight: Bending, points 10 to 15
18
Thermal Diffusivity, mm2/s 100
6.8
Thermal Shock Resistance, points 9.3 to 17
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
78.2 to 82.1
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0