MakeItFrom.com
Menu (ESC)

C15100 Copper vs. S44330 Stainless Steel

C15100 copper belongs to the copper alloys classification, while S44330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
25
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 30 to 64
79
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 270
280
Tensile Strength: Ultimate (UTS), MPa 260 to 470
440
Tensile Strength: Yield (Proof), MPa 69 to 460
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1100
1440
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
21
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 43
40
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
91
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
16
Strength to Weight: Bending, points 10 to 15
17
Thermal Diffusivity, mm2/s 100
5.7
Thermal Shock Resistance, points 9.3 to 17
16

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 99.8 to 99.95
0.3 to 0.8
Iron (Fe), % 0
72.5 to 79.7
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0