MakeItFrom.com
Menu (ESC)

C15100 Copper vs. S82031 Stainless Steel

C15100 copper belongs to the copper alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 270
540
Tensile Strength: Ultimate (UTS), MPa 260 to 470
780
Tensile Strength: Yield (Proof), MPa 69 to 460
570

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1100
1430
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
280
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
820
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 15
28
Strength to Weight: Bending, points 10 to 15
24
Thermal Diffusivity, mm2/s 100
3.9
Thermal Shock Resistance, points 9.3 to 17
22

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 99.8 to 99.95
0 to 1.0
Iron (Fe), % 0
68 to 78.3
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.24
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0