MakeItFrom.com
Menu (ESC)

C15500 Copper vs. AISI 440C Stainless Steel

C15500 copper belongs to the copper alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.0 to 37
2.0 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 190 to 320
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 280 to 550
710 to 1970
Tensile Strength: Yield (Proof), MPa 130 to 530
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 1080
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 350
22
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 42
31
Embodied Water, L/kg 360
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
39 to 88
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
26 to 71
Strength to Weight: Bending, points 11 to 17
23 to 46
Thermal Diffusivity, mm2/s 100
6.0
Thermal Shock Resistance, points 9.8 to 20
26 to 71

Alloy Composition

Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 99.75 to 99.853
0
Iron (Fe), % 0
78 to 83.1
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0.040 to 0.080
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.2
0