MakeItFrom.com
Menu (ESC)

C15500 Copper vs. EN 2.4650 Nickel

C15500 copper belongs to the copper alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 3.0 to 37
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
80
Shear Strength, MPa 190 to 320
730
Tensile Strength: Ultimate (UTS), MPa 280 to 550
1090
Tensile Strength: Yield (Proof), MPa 130 to 530
650

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1080
1350
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 350
12
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 91
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
80
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 42
140
Embodied Water, L/kg 360
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
320
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
1030
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.6 to 17
36
Strength to Weight: Bending, points 11 to 17
28
Thermal Diffusivity, mm2/s 100
3.1
Thermal Shock Resistance, points 9.8 to 20
33

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 99.75 to 99.853
0 to 0.2
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0.040 to 0.080
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4
Residuals, % 0 to 0.2
0