MakeItFrom.com
Menu (ESC)

C15500 Copper vs. CC494K Bronze

Both C15500 copper and CC494K bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 3.0 to 37
7.6
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 280 to 550
210
Tensile Strength: Yield (Proof), MPa 130 to 530
94

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
970
Melting Onset (Solidus), °C 1080
890
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 350
63
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
16
Electrical Conductivity: Equal Weight (Specific), % IACS 91
16

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.9
9.1
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 42
50
Embodied Water, L/kg 360
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
13
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
43
Stiffness to Weight: Axial, points 7.2
6.4
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 8.6 to 17
6.5
Strength to Weight: Bending, points 11 to 17
8.8
Thermal Diffusivity, mm2/s 100
19
Thermal Shock Resistance, points 9.8 to 20
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 99.75 to 99.853
78 to 87
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0.040 to 0.080
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.2
0