MakeItFrom.com
Menu (ESC)

C15500 Copper vs. SAE-AISI 4340 Steel

C15500 copper belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 37
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 190 to 320
430 to 770
Tensile Strength: Ultimate (UTS), MPa 280 to 550
690 to 1280
Tensile Strength: Yield (Proof), MPa 130 to 530
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 350
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 91
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
3.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 42
22
Embodied Water, L/kg 360
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
590 to 3490
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.6 to 17
24 to 45
Strength to Weight: Bending, points 11 to 17
22 to 33
Thermal Diffusivity, mm2/s 100
12
Thermal Shock Resistance, points 9.8 to 20
20 to 38

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 99.75 to 99.853
0
Iron (Fe), % 0
95.1 to 96.3
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0.040 to 0.080
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.2
0