MakeItFrom.com
Menu (ESC)

C15500 Copper vs. C85800 Brass

Both C15500 copper and C85800 brass are copper alloys. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 3.0 to 37
15
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 280 to 550
380
Tensile Strength: Yield (Proof), MPa 130 to 530
210

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 1080
870
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 350
84
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
20
Electrical Conductivity: Equal Weight (Specific), % IACS 91
22

Otherwise Unclassified Properties

Base Metal Price, % relative 33
24
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 360
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
48
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
210
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.6 to 17
13
Strength to Weight: Bending, points 11 to 17
15
Thermal Diffusivity, mm2/s 100
27
Thermal Shock Resistance, points 9.8 to 20
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 99.75 to 99.853
57 to 69
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0.040 to 0.080
0 to 0.010
Silicon (Si), % 0
0 to 0.25
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3