MakeItFrom.com
Menu (ESC)

C15900 Copper vs. ACI-ASTM CG12 Steel

C15900 copper belongs to the copper alloys classification, while ACI-ASTM CG12 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.5
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 720
550
Tensile Strength: Yield (Proof), MPa 240
220

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1040
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 49
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
18
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 45
48
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
180
Resilience: Unit (Modulus of Resilience), kJ/m3 260
120
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 80
4.0
Thermal Shock Resistance, points 26
12

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.12
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
60.3 to 70
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
10 to 13
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.66 to 0.74
0