MakeItFrom.com
Menu (ESC)

C15900 Copper vs. AISI 347 Stainless Steel

C15900 copper belongs to the copper alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.5
34 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 420
430 to 460
Tensile Strength: Ultimate (UTS), MPa 720
610 to 690
Tensile Strength: Yield (Proof), MPa 240
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 49
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 260
150 to 310
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
22 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 80
4.3
Thermal Shock Resistance, points 26
13 to 15

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
64.1 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.66 to 0.74
0