MakeItFrom.com
Menu (ESC)

C15900 Copper vs. ASTM A182 Grade F6b

C15900 copper belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.5
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 420
530
Tensile Strength: Ultimate (UTS), MPa 720
850
Tensile Strength: Yield (Proof), MPa 240
710

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
750
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 49
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
8.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 45
30
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
140
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1280
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
30
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 80
6.7
Thermal Shock Resistance, points 26
31

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 97.5 to 97.9
0 to 0.5
Iron (Fe), % 0 to 0.040
81.2 to 87.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.66 to 0.74
0