MakeItFrom.com
Menu (ESC)

C15900 Copper vs. EN 1.0580 Steel

C15900 copper belongs to the copper alloys classification, while EN 1.0580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is EN 1.0580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.5
5.6 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 420
340 to 360
Tensile Strength: Ultimate (UTS), MPa 720
540 to 620
Tensile Strength: Yield (Proof), MPa 240
290 to 450

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 49
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
31 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
230 to 540
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 23
19 to 22
Strength to Weight: Bending, points 20
19 to 21
Thermal Diffusivity, mm2/s 80
14
Thermal Shock Resistance, points 26
17 to 20

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.22
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
97.5 to 100
Manganese (Mn), % 0
0 to 1.6
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0.66 to 0.74
0