MakeItFrom.com
Menu (ESC)

C15900 Copper vs. EN 1.4029 Stainless Steel

C15900 copper belongs to the copper alloys classification, while EN 1.4029 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.5
10 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 420
440 to 550
Tensile Strength: Ultimate (UTS), MPa 720
700 to 930
Tensile Strength: Yield (Proof), MPa 240
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
750
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
30
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 49
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 45
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
440 to 1410
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
25 to 33
Strength to Weight: Bending, points 20
23 to 27
Thermal Diffusivity, mm2/s 80
8.1
Thermal Shock Resistance, points 26
26 to 34

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0.25 to 0.32
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
82.8 to 87.6
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.25
Titanium (Ti), % 0.66 to 0.74
0