MakeItFrom.com
Menu (ESC)

C15900 Copper vs. EN 1.4122 Stainless Steel

C15900 copper belongs to the copper alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.5
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 420
480 to 520
Tensile Strength: Ultimate (UTS), MPa 720
790 to 850
Tensile Strength: Yield (Proof), MPa 240
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
15
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 49
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
520 to 1000
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
28 to 31
Strength to Weight: Bending, points 20
25 to 26
Thermal Diffusivity, mm2/s 80
4.0
Thermal Shock Resistance, points 26
28 to 30

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0.33 to 0.45
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
77.2 to 83.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.3
Nickel (Ni), % 0
0 to 1.0
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.66 to 0.74
0