MakeItFrom.com
Menu (ESC)

C15900 Copper vs. C52400 Bronze

Both C15900 copper and C52400 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 95
50 to 100
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 720
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1030
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 280
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
11
Electrical Conductivity: Equal Weight (Specific), % IACS 49
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
35
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 310
390

Common Calculations

Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 23
14 to 28
Strength to Weight: Bending, points 20
15 to 23
Thermal Diffusivity, mm2/s 80
15
Thermal Shock Resistance, points 26
17 to 32

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0
Copper (Cu), % 97.5 to 97.9
87.8 to 91
Iron (Fe), % 0 to 0.040
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0.66 to 0.74
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5